Recommendations for Probiotic Use—2015 Update

Proceedings and Consensus Opinion

Martin H. Floch, MD,* W. Allan Walker, MD,†,‡ on behalf of Mary Ellen Sanders, PhD,§ Max Nieuwdorp, MD, PhD,¶ Adam S. Kim, MD,† David A. Brenner, MD,** Amir A. Qamar, MD,†† Tamir A. Miloh, MD,†‡§ §§|| Alfredo Guarino, MD,†† Mario Guslandi, MD,### Levinus A. Dieleman, MD, PhD,### Yehuda Ringel, MD,### Eamonn M. M. Quigley, MD,##### and Lawrence J. Brandt, MD,###

Abstract: This paper describes the consensus opinion of the participants in the 4th Triennial Yale/Harvard Workshop on Probiotic Recommendations. The recommendations update those of the first 3 meetings that were published in 2006, 2008, and 2011. Recommendations for the use of probiotics in neonatal enterocolitis, childhood diarrhea, inflammatory bowel disease, irritable bowel recommendations for the use of probiotics in necrotizing enterocolitis, J Clin Gastroenterol 2015;49:S69–S73

Key Words: probiotics, probiotic use, recommendations

From the *Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT; †Harvard Medical School; §Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston; ††Department of Transplantation, Lahey Hospital and Medical Center, Burlington, MA; ‡Dairy & Food Culture Technologies, International Scientific Association of Probiotics and Prebiotics (ISAPP), Sacramento; **Department of Medicine, University of California, San Diego, San Diego, CA; §§Departments of Internal Medicine, Academic Medical Center and VUmc, Amsterdam, The Netherlands; †††Wallenberg Laboratory, Gothenburg University, Gothenburg, Sweden; §§§Minnesota Gastroenterology P.A., Minnesota, MN; §§‖Pediatric Liver & Liver Transplant, Gastroenterology/Transplantation, Phoenix Children’s Hospital; ||Mayo Clinic, Phoenix; §§Department of Pediatrics, University of Arizona, Tucson, AZ; ***Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples; ###Clinical Hepato-Gastroenterology Unit, Division of Gastroenterology & Digestive Endoscopy, S. Raffaele University Hospital, Milano, Italy; ####Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada; ####Department of Gastroenterology, University of North Carolina School of Medicine, Chapel Hill, NC; ††††The Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, TX; §§§Department of Medicine, Weill Cornell Medical College, New York; and ||||Department of Medicine and Surgery, Division of Gastroenterology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY.

M.H.F. is on the Scientific Advisory Committee (SAC) of Nature’s Bounty and was previously on the Medical Board of Dannon. W.A.W. is supported by NIH grants (P30 DK040561, R01 DK033506, R01 HD012437, R01 HD059126, 3T32DK07191-3951). The other authors declare that they have nothing to disclose. Reprints: Martin H. Floch, MD, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 333 Cedar Street, 1080 LMP, New Haven, CT 06510 (e-mail: martin.floch@yale.edu).

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
weight loss and weight gain. This paper is important for the future study of weight balance and the potential role of novel probiotics derived from gut microbiota studies.

The next presentation and manuscript was given by Adam Kim,4 who coauthored 2 recent textbooks on probiotics. The paper covers dysbiosis. In the manuscript and talk he attempted to define dysbiosis, which is still controversial, but he clearly defines the normal bacterial flora as accepted by the Human Microbiome Project and then in detail covers the alterations of the bacterial flora as now reported in the obesity literature,6 as well as in inflammatory bowel diseases7 and other conditions. To understand probiotic therapy, one has to understand the alterations that occur to the microbiota and hope that the therapy corrects the dysbiosis and brings the host flora back to what is considered a normal microbiota.

The next part of this supplement deals with the liver. This subject was not covered in the last 3 meetings. The first talk was given by Dr David Brenner, who outlined the importance of alcohol and metabolic reactions in the liver, leading to liver failure and the use of probiotics in liver failure. He emphasized the role of the microbiota in liver pathophysiology.8

In the next presentation, Dr Amir Qamar reviews in detail the microbiota in liver disease and goes over the pathophysiology of microflora in hepatic encephalopathy, nonalcoholic fatty liver disease, and steatohepatitis.9–16 In his discussion, he describes the pathologic mechanisms that are suspected and how the use of probiotics may be helpful by describing the probiotic literature in this area and the successful probiotic trials. This is a new approach for recommendation by the Yale/Harvard workshop faculty, which will be listed in Table 1. There is clearly an indication for recommendations even though they are still grade C to some but grade B to others.

In the next paper by Tamir Miloh17 the same factors are described as they relate to children. He discussed the trials in managing children with nonalcoholic fatty liver disease and the success of some. He also points out that, in children, probiotics may be helpful in cystic fibrosis and definitely effective in necrotizing enterocolitis and familial hypercholesterolemia. His paper clearly describes the details of the literature, but he feels more data are needed from larger trials.

The next subject covered in the supplement and at the meeting was a review of treatment for diarrhea of acute gastroenteritis. Dr Guarino reviewed all of the previous data on the use of probiotics, and the recommendations have essentially not changed.18 The most effective agents appear as recommended in Table 1 and include Lactobacillus GG and Saccharomyces boulardii.

The next presentation by Dr Mario Guslandi19 discusses the use of probiotics in pouchitis and Crohn’s disease. He covers the data that probiotics have been widely accepted for use in pouchitis but also takes on the problem of Crohn’s disease, which is controversial. Probiotics themselves do not appear to be preventive or curative in Crohn’s disease, but according to some are helpful in treatment. He also carefully reviews antibiotic-associated diarrhea and its use in prevention in Clostridium difficile.

The next subject on the use of probiotics in inflammatory bowel disease relates to ulcerative colitis.20 This subject is carefully analyzed by Leo Dieleman. It is now widely accepted that probiotic therapy is helpful in ulcerative colitis treatment. He points out that only VSL#3 and Escherichia coli Nissle 1917 have shown benefit in excellent studies. He reviews the mechanisms in which they would be helpful, and our recommendations continue to be positive on this subject. The dysbiosis may occur as reported, but results do not clearly show a correction of the dysbiosis even though probiotics are effective clinically.

Dr Yehuda Ringel first analyzes the intestinal microbiota in irritable bowel syndrome (IBS)21 and functional gastrointestinal disorders as he moderated the afternoon session. He describes the possible physiological mechanisms affecting brain and behavior and the ways that probiotics may treat the condition. He clearly points out that there is a dysbiosis in IBS and that it is assumed that correction of the dysbiosis may affect symptoms. There is a rationale for targeting the intestinal microbiota in the treatment of IBS. However, there are all too few consistent studies, and recommendations are, therefore, limited.

In the next presentation, Eamonn Quigley, who is one of the original authors supporting the use of Bifidobacterium infantis 35624, describes the many problems with selecting probiotics to treat this diverse clinical condition.22 However, he points out that there is scientific evidence and a rationale for the use of probiotics in IBS, but larger and more studies are needed with different organisms.

The next presentation is on fecal microbiota transplant (FMT)23 given by Dr Lawrence J. Brandt who has wide experience in treating these patients. It is clear from the literature he reviews that FMT works in treating severe recurrent C. difficile infection. In addition, the future holds a wide range of options. In this review of the literature, the first papers described include the early work by Dr Borody in Australia and now the use of voluntary donor fecal microbial combinations in pills as presented in the papers by Louie et al24 and Youngster et al.25 Dr Brandt discusses the possibility that this treatment can be used for other diseases. This is a historic time for FMT. The new works being presented in the literature should be exciting. The present recommendations continue that FMT works for the treatment of recurrent C. difficile diarrhea.

Table 1 presents the recommendations of the Yale/Harvard workshop faculty. This is an update to the previous table.26 We include liver disease in the table for the first time. References are included, as well as the indications in hepatic encephalopathy, NAFLD, NASH, and childhood hypercholesterolemia.

Floch and Walker have written this consensus report, which is supported by all presenters.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
TABLE 1. Recommendations for Probiotic Use: Update 2015

<table>
<thead>
<tr>
<th>Clinical Condition</th>
<th>Effectiveness</th>
<th>Specific Strain of Organism and Strain References</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infectious childhood—treatment</td>
<td>A</td>
<td>LGG, Saccharomyces boulardii, Lactobacillus reuteri SD2112</td>
<td>27–30</td>
</tr>
<tr>
<td>Prevention of infection</td>
<td>B</td>
<td>S. boulardii, LGG</td>
<td>27,28,30</td>
</tr>
<tr>
<td>Prevention of AAD</td>
<td>A</td>
<td>S. boulardii, LGG, combination of L. casei DN14 G01, L. bulgaricus, L. gasseri, Streptococcus thermophilus</td>
<td>31–33</td>
</tr>
<tr>
<td>Prevention of recurrent CDAD</td>
<td>B/C</td>
<td>S. boulardii, LGG, FMT</td>
<td>34–37</td>
</tr>
<tr>
<td>Prevention of CDAD</td>
<td>B/C</td>
<td>LGG, S. boulardii</td>
<td>34,37</td>
</tr>
<tr>
<td>IBD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pouchitis</td>
<td>A</td>
<td>VSL#3</td>
<td>38–40</td>
</tr>
<tr>
<td>Preventing and maintaining remission</td>
<td>C</td>
<td>VSL#3</td>
<td>41</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>Induce remission</td>
<td>Escherichia coli Nissle, VSL#3</td>
<td>42–44</td>
</tr>
<tr>
<td>Maintenance</td>
<td>A</td>
<td>E. coli Nissle, VSL#3</td>
<td>43–45</td>
</tr>
<tr>
<td>Crohn’s</td>
<td>C</td>
<td>E. coli Nissle, S. boulardii, LGG</td>
<td>46–48</td>
</tr>
<tr>
<td>IBS</td>
<td>B</td>
<td>Bifidobacterium infantis B5624, VSL#3</td>
<td>49–53*</td>
</tr>
<tr>
<td>C</td>
<td>B. animalis, L. plantarum 299V</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Necrotizing enterocolitis</td>
<td>B</td>
<td>L. acidophilus NCDO1748, B. bifidum NCDO1453</td>
<td>56,57</td>
</tr>
<tr>
<td>Recommendations from 2008†</td>
<td>Immune response</td>
<td>L. rhamnosus GG, L. acidophilus LAFT1, E. lactis, L. johnsonii</td>
<td>58,59</td>
</tr>
<tr>
<td>Allergy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopic eczema associated with cow’s milk allergy</td>
<td>Treatment</td>
<td>LGG, B. lactis</td>
<td>59</td>
</tr>
<tr>
<td>Prevention</td>
<td>A</td>
<td>LGG, B. lactis</td>
<td>59</td>
</tr>
<tr>
<td>Radiation enteritis</td>
<td>C</td>
<td>VSL#3, L. acidophilus</td>
<td>60,61</td>
</tr>
<tr>
<td>Vaginosis and vaginitis</td>
<td>C</td>
<td>L. acidophilus, L. rhamnosus GR-1, L. reuteri RC14</td>
<td>62–64</td>
</tr>
<tr>
<td>Recommendations from 2015</td>
<td>Liver disease</td>
<td>L. rhamnosus GG, L. acidophilus LAFT1, L. plantarum, E. lactis, L. johnsonii</td>
<td>58,59</td>
</tr>
<tr>
<td>Hepatic encephalopathy</td>
<td>A</td>
<td>VSL#3</td>
<td>8–12</td>
</tr>
<tr>
<td>Nonalcoholic fatty liver disease</td>
<td>C</td>
<td>VSL#3, combinations of L. plantarum, L. delbrueckii, L. bulgaricus, L. acidophilus, L. rhamnosus, B. bifidum, S. thermophilus, B. longum</td>
<td>8,9,13,15,16</td>
</tr>
<tr>
<td>Nonalcoholic fatty liver disease in children</td>
<td>C</td>
<td>VSL#3, LGG</td>
<td>17</td>
</tr>
<tr>
<td>Alcoholic liver disease</td>
<td>C</td>
<td>VSL#3, LGG, L. acidophilus, L. bulgaricus, B. bifidum, B. longum with oligosaccharides</td>
<td>8–17</td>
</tr>
</tbody>
</table>

*Guandalini et al. was made available after the workshop meeting on April 8, 2011, but believed to be significant enough to qualify this probiotic to be in a B category.
†Check 2008 references for further elaboration on strains used and their availability.
AAD indicates antibiotic-associated diarrhea; CDAD, Clostridium difficile-associated diarrhea; FMT, fecal microbiota transplant; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; LGG, Lactobacillus GG.

REFERENCES

53. Guandalini S, Magazzu G, Chiaro A, et al. VSL#3 improves symptoms in children with irritable bowel syndrome: an...

